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1. Introduction

The attractor mechanism is a general feature of black hole solutions to four dimensional

N = 2 supergravity [1 – 3]. It states that near the horizon of a supersymmetric black hole

the vector multiplet moduli flow to special values which only depend on the charge of the

black hole and not on the asymptotic values of the moduli. The simplest application of

the attractor mechanism is to compactifications of type II string theory on a Calabi-Yau

manifold Y . In this case the ten dimensional action of string theory reduces, in the low

energy limit, to an effective N = 2 supergravity theory in four dimensions, whose field

content and action depend on the choice of Y . The attractor mechanism has an elegant

interpretation in terms of the geometry of Y : for type IIA (IIB), the Kähler (complex)

structure of Y flows to an attractor fixed point at the horizon. The attractor mechanism

has also been shown to occur for some non-supersymmetric but extremal black holes [4 – 6].

In this paper we will study supersymmetric black hole attractors for a broader class

of compactifications which preserve N = 2 supersymmetry but are not necessarily Calabi-

Yau. This class includes both non-Kähler compactifications as well as compactifications

with non-trivial background flux. Examples of such N = 2 compactifications have been

constructed using T-duality [7]. Some geometrically more interesting non-Kähler vacua

have also been provided recently in [8], but they involve gs 6= 0 and hence cannot be used

– 1 –



J
H
E
P
0
9
(
2
0
0
6
)
0
4
8

as supergravity solutions. Although from the four dimensional perspective the resulting

black hole solutions are exactly as in [1 – 3], the geometric description is less clear than in

the Calabi-Yau case. For example, there is no general description of the vector multiplet

moduli space of these compactifications in terms of geometric quantities.

For this reason, we will study these configurations as solutions to the full ten dimen-

sional equations of motion, rather than the low energy effective theory in four dimensions.

From the ten dimensional point of view, these black holes are simply special classes of

solutions with flux, to which we can apply the pure spinor techniques of [9]. For example,

the near horizon geometry of a BPS black hole is just a particular flux compactification

whose four dimensional geometry is AdS2 × S2.1

The ten dimensional gravitino variations yield a new form of the attractor equation,

phrased in the language of pure spinors. These pure spinors play a central role in the theory

of generalized complex manifolds [14 – 16], and have recently found several applications

in supergravity, in the study of compactifications of type II theories on six dimensional

manifolds [17, 9, 18]; analogues on seven-manifolds [18, 19] and for M-theory on eight-

manifolds [20] also exist. We give a brief introduction to pure spinors in appendix B. For

practical purposes, a pure spinor Φ may be thought of as formal sum of differential forms

of different rank.

To describe N = 2 compactifications in terms of pure spinors, we will follow the

approach of [17]. These authors classified N = 1 vacua using a pair of pure spinors Φ±,

which determine the metric on the internal manifold. For type II string theory on a Calabi-

Yau, these two pure spinors have a simple interpretation. One of them is the holomorphic

three form Ω, which fixes the complex structure of the Calabi-Yau, and the other is eiJ

where J is the Kähler form. In general, anN = 2 vacua is characterized by two pairs of pure

spinors, along with the constraint that each pair determines the same metric on the internal

manifold. The BPS black holes under consideration break the N = 2 supersymmetry of a

background down to N = 1.

The attractor equations describe how the geometry of the internal manifold changes

as a function of radius. At every value of r, the internal manifold satisfies the equations

for an N = 2 vacuum in four dimensions. However, one linear combination Φ of the pure

spinors flows as a function of radius. So as r changes, the internal manifold flows through

the moduli space of N = 2 compactifications. At the horizon, this pure spinor approaches

a fixed value determined only by the charge of the black hole – it obeys an equation of the

form ∑

k

fk = Im (C̄Φ)

where fk is a k-form flux. This equation can be solved in simple geometric terms, using a

theorem of Hitchin [14]. (Since Φ is related to pure spinors describing the vacua, it also

obeys an extra differential condition, whose general solution is more complicated, as we

will see.) This theorem involves the construction of a function, whose integral – known as

1This fact has led to a fruitful interplay between between the study of flux compactifications and extremal

black holes; see e.g. [10, 12, 11, 13].
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the Hitchin functional – can be interpreted as the entropy of the associated black hole.2

Our construction may be thought of as a physical implementation of this theorem; the

attractor equations admit a solutions precisely when the associated black hole has a finite

area horizon.

The approach described above has several advantages, which are relevant even for stan-

dard Calabi-Yau compactifications. First, because we have solved the full ten dimensional

equations of motion, the solutions apply in cases where the four dimensional supergravity

equations are no longer valid. In particular, they can describe configurations where the

Kaluza-Klein length scale of the compactification manifold is not small compared to the

length scales of the four dimensional solution. It may therefore prove useful in the study

of small black holes, where the radius of curvature of the black horizon can be of order

the Kaluza-Klein scale (see, e.g. [26 – 30]). In addition, this derivation demonstrates ex-

plicitly that BPS black hole solutions can be consistently lifted to solutions of the full ten

dimensional supergravity.

Our hope is that the universal attractor behavior described in this paper may play a

role in a better understanding of the dynamics and definition of string theory in these back-

grounds. Recently, it has been proposed that such black holes provide a non-perturbative

definition of topological string theory in the Calabi-Yau case [25]. It is therefore natural

to expect that the black hole attractors described in this paper are related to topological

string theory on non-Calabi-Yau compactifications.3

This paper is organized as follows. In the next section we will describe the attractor

equations in terms of pure spinors, and discuss the general properties of these solutions.

In section 3 we will consider a few simple examples. Appendix A describes our spinor

conventions, and appendix B contains a brief introduction to the pure spinor constructions

used in the text. appendix C reviews a few features of the four dimensional attractor

equations which are necessary to make contact with the pure spinor formulation.

2. Attractor black holes in ten dimensions

In this section we will derive the attractor equations for a wide class of BPS black holes,

using ten dimensional supergravity. These equations describe the radial flow of a pure

spinor on the internal manifold. The derivation given below requires some technical ma-

nipulations, but the main results are rather simple to state. For each of the backgrounds

under consideration, one can construct eight pure spinors, which we will call Φ13
± , Φ24

± , Φ14
±

and Φ23
± . These pure spinors are constructed from the supersymmetry variations. The first

two of these pure spinors obey the constraints required for a compactification to an N = 2

Minkowski vacuum. The other two obey a first order differential equation, which describes

how the internal geometry flows in the moduli space of N = 2 vacua as a function of radius.

These equations are the attractor equations for this background; from the four dimensional

2This relation between the Hitchin functional and the black hole entropy has been noted by [21, 22].

The Hitchin functional has also found use in other closely related physical contexts, see e.g. [23, 24, 21].
3A recent paper [22] has discussed a generalization of the conjecture of [25] in this context, although in

absence of RR fields; see also [23].
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point of view, they describe the radial flow of the vector multiplet moduli. The explicit

equations describing this flow are written down at the end of section 2.3.

In section 2.1 we describe the basic form of the backgrounds under consideration, in

section 2.2 we write down the fermion variations, and in section 2.3 we rewrite the BPS

conditions in terms of pure spinors. section 2.4 contains a brief discussion of the solutions

of these equations, using a theorem of Hitchin’s.

2.1 The Background

We will start by describing the background under consideration.

We are interested in BPS solutions of type II supergravity that describe a four dimen-

sional black hole geometry times an internal six-manifold Y . The ten dimensional metric

will be of the form

ds2 = e2B(y)
(
−e2U(r)dt2 + e−2U(r)(dr2 + r2(dθ2 + cos θ2dφ2))

)
+ gmn(r, y)dymdyn. (2.1)

The (t, r, θ, φ) components of the metric describe an extremal black hole solution in four

dimensions, whose geometry depends on the function U(r). The metric gmndy
mdyn on Y

is a function of radius as well as the internal coordinates, and we have explicitly included

a warp factor B(y). Although in principal we could dimensionally reduce on Y to obtain

an effective supergravity in D = 4, it turns out to be much easier to study these black hole

solutions by working directly with ten dimensional quantities.

The spin-connection following from this metric has the form DM = ∂M + 1
4ΩAB

M ΓAB,

where M is a curved 10-dimensional index and A,B are flat indices. The components of

the spin connection are4

Ωt
01 = e2UU ′, Ωθ

12 = −1 + rU ′, Ωφ
13 = cos θ(−1 + rU ′),

Ωφ
23 = sin θ, Ωr

ab = em[ae
b]
m
′ = 0, Ωm

1a = −1
2e
−B+Uenag′nm,

Ωm
ab = ωm

ab, Ω0a
t = eB+Ueam∂mB , Ω1a

r = eB−Ueam∂mB ,
Ω2a
θ = reB−Ueam∂mB , Ω3a

φ = reB−U cos θeam∂mB .

(2.2)

where m,n are curved indices on Y , and a, b the associated flat indices. The 6-bein ema on

Y obeys ema e
n
b gmn = δab. We have chosen our local frame to obey (ea

m)′ = βmnea
n, where

βmn = −1
2g
′
mn is symmetric in mn. This is why Ωr

ab = 0.

In addition to the metric described above, the backgrounds under consideration will

include flux. The R-R fluxes can be decomposed as

F
(10)
2n = volA ∧ fA2n−2 + volS ∧ fS2n−2 + F i2n + volA ∧ volS ∧ F e2n−4 (2.3)

where volA = (e2U/r2)dt ∧ dr and volS = cos θdθ ∧ dφ. Here fA, fS, F i and F e are

differential forms on Y . A subscript on a form indicates its rank; in the discussion below

we will often drop these subscripts when they are not necessary. The first two terms

in (2.3) are the gauge field produced by the charged black hole; if we were to dimensionally

4Here ′ denotes derivative with respect to r.
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reduce to four dimensions, they would describe electric and magnetic fluxes sourced by a

configuration of branes wrapped on Y . The last two terms describe purely internal and

external 2n-form flux. In type IIA, the index n runs over 0, 2, 4, 6, 8, 10 while in type

IIB n runs over 1/2, 3/2, 5/2, 7/2, 9/2. The R-R fluxes described above contain both field

strengths and their duals, so we must impose the self-duality relations5

F
(10)
2n = (−1)Int[n] ∗10 F10−2n . (2.4)

This relates fA to fS and F i to F e, so from now on we will write our expressions involving

R-R fluxes in terms of F ≡ F i and f ≡ fS.

We will also consider NS-NS fluxes of the form

H(10) = H3 + dr ∧ b′2 (2.5)

where H and b are differential forms on Y . The second term in this expression arises

because we are allowing the internal NS-NS two form b to depend on r.

The Bianchi identities and source-free equations of motion for the R-R fields take the

form (d−H(10)∧)F (10) = 0. For the fluxes described above, this is

(d−H∧)F = 0 , (d+H∧)(e4B ∗ F ) = 0 , dH = 0 ;

∂r(e
−b∧F ) = 0 , d(e2B ∗ b) = 0 , d(e4B ∗H) =

e2(U+B)

r2
∂r(r

2 ∗ b′) , (2.6)

∂r(e
−b∧f) = 0 , (d−H∧)f = 0 , (d+H∧) ∗ f = 0 .

Here ∗ is the hodge star on Y , and we are omitting the n indices used above. These identi-

ties, together with BPS equations written below, imply the full ten dimensional equations

of motion.

2.2 The supersymmetry variations

The gravitino and dilatino variations in ten-dimensional type II supergravity are

δψM = (DM + 1
4HMP)ε + eφ

16

∑
n¡F2nΓMPnε

δλ = (¡∂φ+ 1
2¡HP)ε+ eφ

16

∑
n ΓM¡F2nΓMPnε.

(2.7)

We have not written the spinor indices explicitly. Our gamma matrix conventions are

described in appendix A. We have also suppressed the doublet indices i = 1, 2 on the

gravitino ψM , dilatino λ, and supersymmetry parameter ε. For example, ε = (ε1, ε2) is a

doublet of ten-dimensional Majorana-Weyl spinors. The P matrices act on these doublet

indices, as P = Γ11 and Pn = Γn11σ
1 in type IIA, and as P = −σ3, Pn = σ1 for (n+ 1/2)

even and Pn = iσ2 for (n+ 1/2) odd in type IIB.

Using the self-duality relation (2.4), and putting in the doublet indices explicitly, the

the gravitino equation can be written as

δψ1
M = (DM ± 1

4HM)ε1 ∓ eφ

8 Γ01 e2U

r2 ¡fΓMε
2 +¡FΓMε

2

δψ2
M = (DM ∓ 1

4HM)ε2 + eφ

8 Γ01 e2U

r2 ¡f †ΓMε1 ±¡F †ΓMε2.
(2.8)

5Int[n] denotes the integer part of n and ∗10 the ten dimensional Hodge star.

– 5 –



J
H
E
P
0
9
(
2
0
0
6
)
0
4
8

The upper sign is for type IIA and the lower sign for IIB. We have defined

¡f = ¡fA0 −¡fA2 +¡fA4 −¡fA6
¡F = eφ

8

(
¡F i0 −¡F i2 +¡F i4 −¡F i6

)
.

(2.9)

for type IIA, and

¡f = ¡fA1 +¡fA3 +¡fA5
¡F = eφ

8

(
¡F i1 +¡F i3 +¡F i5

) (2.10)

for type IIB. In the IIB case, ¡f3 is anti-hermitian while ¡f1,5 are hermitian. In IIA, ¡f0,4 are

hermitian while ¡f2,6 are anti-hermitian.

Using the expression for the spin connection, we can write out the components of the

gravitino variations in their full glory. For example,

δψ1
t = e2UΓ01

(
−1

2U
′ε1 ∓A(r)¡fΓ0ε

2
)

+ Γt(±¡Fε2 + 1
2¡∂Bε

1)

δψ1
r = ∂rε

1 ±A(r)¡fΓ0ε
2 + Γr(±¡Fε2 + 1

2¡∂Bε
1)± 1

4¡b
′ε1

δψ1
m = (Dm ± 1

4Hm)ε1 +¡FΓmε
2 + Γr

(
1
4Γn(−g ± b)′mnε1 ±A(r)Γ0¡fΓmε

2
)
,

(2.11)

where A(r) = eB+U+φ/8r2. The expressions for δψ2
M are identical, but with ¡f → ∓¡f †,

¡F → ±¡F † and H → −H. The angular components of δψ are similar, so we will not write

them down explicitly.

In a supersymmetric background these fermion variations vanish. We are looking for

solutions that preserve half of the four dimensional supersymmetry, so only one linear com-

bination of the supersymmetry parameters ε1 and ε2 will be preserved by the background.

It turns out that the correct linear relation between ε1 and ε2 includes the action of Γ0,

but not the action of any other four-dimensional gamma matrices.6 This implies that the

terms in the gravitino variation containing Γ1 must vanish separately from those that do

not. So the δψt = 0 and δψm = 0 equations become

0 = −1
2U
′ε1 ∓A(r)¡fΓ0ε

2

0 = 1
4Γn(−g ± b)′mnε1 ±A(r)Γ0¡fΓmε

2 (2.12)

and
0 = ±¡Fε2 + 1

2¡∂Bε
1

0 = (Dm ± 1
4Hm)ε1 +¡FΓmε

2 .
(2.13)

Using (2.13) and (2.12), we can eliminate the R-R dependence in the δλ = 0 and

δψr = 0 equations. The dilatino variation becomes

0 = (¡D +¡∂(2B − φ))ε1 ± 1

4
¡Hε2 ; (

1

4
gmng′mn)ε1 = 0 (2.14)

while the radial gravitino equation becomes

0 = ∂rε
1 − 1

2
U ′ε1 − 1

4
¡b′ε1 . (2.15)

6This is the standard situation for branes in R4 that extend in time but not in any other spatial directions.
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The final term in this equation is the only one which depends explicitly on the internal

coordinates; we will take it to vanish separately from the other two terms.

Similarly, one can eliminate the R-R dependence from the δψ1
θ,φ = 0 equations. The

result is

Dαε
1 +

1

2
γαΓ1ε1 = 0 , α = (θ, φ) . (2.16)

where D and γα denote the spin connection and gamma matrices on a unit S2.

We can now integrate (2.15) and (2.16) to determine the spatial dependence of ε. The

radial equation implies that

εi(r, θ, φ, y) = e−
1
2
U(r)εi0(θ, φ, y) , (2.17)

where ε0 is independent of radius. We will not need to write down the explicit dependence

of ε0 on (θ, φ), but it is straightforward to do so using methods similar to those described

in

We can now decompose the radially independent, ten-dimensional spinors ε1,2
0 in terms

of four and six dimensional spinors, as

ε10 = ζ1
+(θ, φ)⊗ η1

+(y) + ζ2
+(θ, φ)⊗ η2

+(y) + c. c.

ε20 = ζ1
+(θ, φ)⊗ η3

∓(y) + ζ2
+(θ, φ)⊗ η4

∓(y) + c. c.
(2.18)

Here ζ i and ηi denote four and six dimensional spinors, respectively; a subscript on a

spinor denotes its chirality. The type IIA (IIB) case is given by the upper (lower) sign,

where ε1,2 have the opposite (same) chirality. Physically, ζ 1,2 can be thought of as the two

supercharges in four dimensions that would be preserved if the black hole were not present.

The Calabi-Yau case involves taking η2 = η3 = 0 and η1 = η4 to be the single globally

defined spinor.

We can now insert (2.18) into (2.12) and collect terms of the same four-dimensional

chirality. These equations imply that Γ0ζ
2
− = α(r)ζ1

+, where α(r) is an r-dependent phase

that will be determined. This relationship can be thought of as breaking the N = 2

supersymmetry that would have been preserved in four dimensions down to a single linear

combination.

Equation (2.12) becomes

−1
2U
′η1

+ ∓ αA(r)¡fη4
± = 0 , 1

4(−g ± b)′mnγnη1
+ ∓ αA(r)¡fγmη4

± = 0 ,

−1
2U
′η2

+ ± αA(r)¡fη3
± = 0 , 1

4(−g ± b)′mnγnη2
+ ± αA(r)¡fγmη3

± = 0 ,

−1
2U
′η4

+ − αA(r)¡f †η1
± = 0 , 1

4(−g ± b)′mnγnη4
+ − αA(r)¡f †γmη1

± = 0 ,

−1
2U
′η3

+ + αA(r)¡f †η2
± = 0 , 1

4(−g ± b)′mnγnη3
+ + αA(r)¡f †γmη2

± = 0 .

(2.19)

Equations (2.13) and (2.14) are precisely the equations that arise in the classification

of Minkowski vacua in [17]. In the next section we will follow the analysis of [17] to study

these equations.
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2.3 From variations to the attractor

In this section we will analyze the spinor equations described above in terms of geometrical

quantities. In doing so, it will be convenient to use the pure spinor formalism of [14 – 16],

which is reviewed briefly in appendix B. We will focus on the IIB case, and use the lower

sign in (2.19). The analysis for IIA is almost identical – we will simply quote the IIA

results at the end of this section.

We will start by reviewing the various structures defined by our spinors on the internal

manifold Y – this is described in greater detail in appendix B. In six dimensions, a single

spinor η with no zeros defines an SU(3) structure on the tangent bundle T of Y . This

is simply the statement that one can form from this spinor two non-vanishing differential

forms, a two form J and three form Ω, which obey J ∧ Ω = 0 and J 3 = 3
4 iΩ ∧ Ω̄. These

forms are associated to two elements ¡Ω and ¡eiJ of the Clifford algebra, which are given by

exterior products of the original spinor: ¡Ω = η+ ⊗ η− and eiJ¢ = η+ ⊗ η+.

For a pair of spinors, say (η1, η3), the structure induced on the tangent bundle of Y is

more complicated – it depends on the relative orientation of η1 and η3. If the spinors are

always parallel they define an SU(3) structure. If they are orthogonal they define what is

known as an SU(2) structure. If they are neither parallel nor orthogonal, they define what

is sometimes known as a “dynamic SU(2) structure.”

So far we have discussed the structures defined on the tangent bundle, but it is more

useful to discuss the structure defined on the sum of the tangent and cotangent bundles,

T⊕T ∗. In fact, all of the cases described above define an SU(3)×SU(3) structure on T⊕T ∗.
To see this, first note that the bispinor ¡Φ13

± = η1
+ ⊗ η3†

± defines a pair of SU(3) structures,

via its annihilators from the left and from the right. These two SU(3) structures live on

T ⊕ T ∗, because ¡Φ13
± can be mapped via the Clifford map to the bundle of differential

forms, which is a representation of the Clifford algebra on T ⊕ T ∗. These bispinors are

known as pure spinors, because they are annihilated by half of the elements of the algebra

Clifford(6,6).

When we have four spinors η1
+, . . . , η

4
+, the structures are even more complicated.

On the tangent bundle T , they can define anything from an SU(3) structure to a trivial

structure (meaning that T is trivial and the manifold is parallelizable). The structure

defined on the sum T ⊕ T ∗ can range from SU(3)×SU(3) to SU(2)×SU(2). The reason is

that this time, even for the classification of vacua we need more pure spinors: not just Φ13
± ,

but also Φ24
± , as we will see shortly.

We now turn to the analysis of the equations. We will start with (2.13) and (2.14),

which are the same as the ones found in the classification Minkowski vacua. In particular,

the pairs (η1, η3) and (η2, η4) each separately satisfy the equations for a Minkowski vacuum.

It is straightforward to write these equations in terms of pure spinors. In type IIB, one

gets [17]

e−2B+φ(d−H∧)(e2B−φΦ13,24
+ ) = dB ∧ Φ̄13,24

+ + i
eφ

8
|η1,2|2 ∗ σ(F ) , (2.20)

e−2B+φ(d−H∧)(e2B−φΦ13,24
− ) = 0 (2.21)

– 8 –
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where σ(Fk) = (−)[k/2]Fk as in [15]. In addition, we also have d log |η1,2|2 = dB. We have

used here the fact that, to have a supergravity vacuum with fluxes, one needs an orientifold

action; this relates ε1 to ε2 in such a way that |η1|2 = |η2|2 and |η3|2 = |η4|2 [17]. In fact,

we will see shortly that all four of these norms are equal.

To summarize, we have found that for any r the internal manifold must support an

N = 2 vacuum. In other words, the radial flow moves us through the moduli space of

N = 2 Minkowski vacua, just as we would expect.

We now turn to the main computation of this paper: analyzing the equations for radial

evolution through the moduli space of N = 2 vacua. We first look at the evolution of U .

The first equation in the first column of (2.19) implies that

U ′ = 2αA|η|2 (σ(f) ∧ Φ̄14
− )top

(σ(Φ14
− ) ∧ Φ̄14

− )top
=
eU

r2

(
cα(r)

∫
e2B+φσ(f) ∧ Φ̄14

−
4
∫
σ(Φ14

− ) ∧ Φ̄14
−

)
. (2.22)

In the first step we have used Tr(γ¡A¡B) = 8i√
g (A ∧ B)top, and in the second step we have

used the fact that U ′ is constant in the internal directions. The appearance of σ in this

formula might seem unfamiliar; the pairing (σ(A)∧B)top between differential forms A and

B, often denoted (A,B), is known as the Mukai pairing (see for example [15]). The term

in the parenthesis in (2.22) may be thought of as the absolute value of the central charge

of the black hole, |Z|, which typically arises in the black hole attractor equations – a brief

review of these equations is contained in appendix C. Note that the phase α is determined

by (2.22), since U is real.

If we had instead used the third equation in the first column of (2.19), we would have

obtained the same equation with |η4|2 replaced by |η1|2. This implies that |η4|2 = |η1|2.

We can derive similar equations for η2 and η3, from which it follows that all of the spinor

norms are equal. These spinor norms are just given by |η|2 = ceB where c is an integration

constant (see the comment after (2.21)). We have used this fact in writing (2.22).

Since we have already factored the radial dependence out of ε0, the bispinors ¡Φ14
± are

independent of r: ∂r¡Φ14
± = 0. However, this does not mean that the differential forms Φ±

(related to the bispinors by the Clifford map) are independent of radius. This is because

the internal metric gmn, and hence the gamma matrices γm, depend on the radius. For an

odd bispinor ¡C,

∂r(¡C) = ((((
((((

((
(∂rC + βmndx

n ∧ ιmC) = ©©(∂rC) +
1

2
βmn

(
gmn¡C +

1

2
γm¡Cγn

)
(2.23)

where, as described in section 2.1, βmn = −1
2g
′
mn. In the second step we have used (B.1).

The resulting equation describes the variation of an odd bispinor¡C due only to the variation

of the components Cm1...mk , after removing the contribution from the gamma matrices. The

formula for even bispinors differs from (2.23) by some signs.

Let us consider the case where ¡C = ¡Φ14
− = η1

+η
4 †
− . First, note that the g′mng

mn term

in (2.23) vanishes due to (2.14). We are left with a term of the form gmnγ
n¡Φ14
− γ

m, which

by (2.19), can be written as the sum of two terms, one proportional to b′mnγ
m¡Φ14
− γ

n and the

other proportional to ¡fγm¡Φ14
− γ

m. We will now describe how to massage these two terms.
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We will start with the b′mnγ
m¡Φ14
− γ

n term. The m,n indices are antisymmetrized, so we

can use the fact that γ [m(·)γn] = −dxm ∧ dxn ∧+ιmn. Since ¡b′ηi± = 0, (see the discussion

after (2.15)), it follows that b′mn[γmn,¡Φ14
− ] = 0; this can be rewritten as b′mn(dxm ∧ dxn +

ιmn)Φ14
− = 0. So we are just left with 2b′ ∧ Φ14

− .

We can now attack the ¡fγm¡Φ14
− γ

m term, which is more interesting. The manipulation

we will describe is similar to one used in [9, 17].7 Since ¡Φ14
− = η1

+η
4 †
− , we can use the first

equation in the second column of (2.19) to get ¡fγmη4
−η

4 †
− γ

m. We can then use the fact

that 1+γ
2 = η+η

†
+ + 1

2γ
mη−η

†
−γ

m for any η; this is just the expansion of the operator 1+γ
2

in the chiral basis η+, γmη−. So the term under consideration can be written as a linear

combination of ¡f(1+γ) and ¡fη4
+η

4 †
+ . Using the third equation in the first column of (2.19),

this second term is just U ′¡Φ14
+ .

One can similarly manipulate ∂rΦ
14
+ . The only difference is that this time the f

contribution looks like ¡fγmη4
−η

4 †
+ γm. This vanishes, because η4

−η
4 †
+ is (the slash of) a

three-form and γm¡Ckγm = (−)k(6− 2k)¡Ck.

If we put this all together, we get two equations involving bispinors ¡Φ14
± . We can write

these equations in terms of differential forms as

eb∧∂r
(
e−b∧Φ14

+

)
= 0 (2.24)

eb∧∂r
(
e−b∧Φ14

−
)

= αA|η|2(f + iσ(∗f))− α2U ′Φ̄14
− (2.25)

where again σ(fk) = (−)[k/2]fk. It is interesting to note that these formulas are quite

similar to ones describing vacua. This resemblance would be even more explicit if we had,

e.g. considered a non-compact Y – the norms of the spinors would not necessarily be equal,

and we would have obtained an F term in addition to ∗F . Finally, we should note that

there is a similar pair of equations for Φ23
± , which are found by taking 14 → 23 and α→ −α.

We will focus on only the Φ14
± equations for the rest of this subsection.

These formulae, together with equation (2.22) for U ′, describe how the geometry of

the black hole and the internal manifold varies with radius. They are the generalizations

of the attractor equations for this background, and one of the main results of this paper.

Equation (2.24) says that the four dimensional hypermultiplet moduli do not flow with

radius. Equation (2.25) describes how the four dimensional vector moduli flow. To compare

these to the usual attractor equations it is useful to write them in a slightly different form.

Taking the real part of (2.25) gives

Re
∂r

(
e−b∧Φ14

−
)

Aα|η|2 = e−b∧
[
f −Re

(
Φ14
−

U ′

αA|η|2
)]

(2.26)

which resembles the standard attractor flow equations.

7From the description given in the text, it is not clear that we have extracted all of the information

from (2.19). To show that this is indeed the case, one can expand f in terms of the pure Hodge diamond

basis used in [15, 17].
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Near the horizon of the black hole at r = 0 the geometry of Y approaches an attractor

fixed point. At this fixed point, the pure spinor obeys a generalized stabilization equation

f1 + f3 + f5 = 2Im(C̄Φ14
− ) , C̄ =

i
∫
e2B+φσ(f) ∧ Φ̄14

−
e2B+φ

∫
σ(Φ14

− ) ∧ Φ̄14
−
. (2.27)

Thus the charges of the black hole, in terms of the fluxes f1, f3, f5, fix ¡Φ14
− on the internal

manifold. This is the generalization of the statement that, in type IIB, the holomorphic

three form of a Calabi-Yau is fixed by the charge of a BPS black hole. We will demon-

strate that this equation can indeed be solved in the following section, using a theorem of

Hitchin’s.

We will simply quote the corresponding results for type IIA. The function U ′ obeys

U ′ =
eU

r2

(
cα(r)

∫
e2B+φσ(f) ∧ Φ̄14

+

4
∫
σ(Φ14

+ ) ∧ Φ̄14
+

)
. (2.28)

The attractor equations obeyed by the pure spinors are

e−b∧∂r
(
eb∧Φ14

−
)

= 0 (2.29)

e−b∧∂r
(
eb∧Φ14

+

)
= αA|η|2(f − iσ(∗f)) + α2U ′Φ̄14

+ . (2.30)

Again, from the four dimensional point of view this says that the vector multiplet moduli

flow as a function of r. Taking the real part of (2.30) gives

Re
∂r

(
eb∧Φ14

+

)

Aα|η|2 = eb∧
[
f + Re

(
Φ14

+

U ′

αA|η|2
)]

. (2.31)

At the attractor point this gives the stabilization equation

f0 + f2 + f4 + f6 = 2Im (C̄Φ14
+ ) , C̄ =

i
∫
e2B+φσ(f) ∧ Φ̄14

+

e2B+φ
∫
σ(Φ14

+ ) ∧ Φ̄14
+

. (2.32)

As in the IIB case, the constant can be determined from (2.31) and (2.28), or by wedging

both sides with Φ+ and integrating.

2.4 Solving the attractor equation

Equations (2.27) are a new version of the usual attractor equations, phrased in the language

of pure spinors. We can now use mathematical results concerning pure spinors, such as

those of Hitchin [14, 32, 33] to describe the solutions to these equations.8 These results

determine exactly when a sum of differential forms can be the imaginary part of a pure

spinor, in terms of a stability condition.

Before discussing this theorem, let us make one comment about the attractor equa-

tion (2.27). First, note that the Bianchi identity (2.6) implies that ∂r(e
−b∧f) = 0. So

f depends on r, as one would expect since the geometry of Y changes as a function of

8See [24] for a review of this mathematics in the context of four-dimensional effective theories.
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radius. The value of f at r = ∞ is related to the value at r = 0 by f∞ = fatte
∆b, where

∆b = b∞ − batt. The flux f appearing in (2.27) is evaluated at the attractor fixed point,

f = fatt. So the attractor equation we are trying to solve is, when written in terms of the

flux at infinity, f∞ = 2Im (C̄e∆bΦ14
− ).

We are now in a position to state Hitchin’s theorem; the ideas behind it are explained

briefly in appendix B and in the references. Given a sum of forms f , define

q(f) = Tr(J 2) , JΛΣ ≡
(σ(f) ∧ ΓΛΣf)top

vol
. (2.33)

Here Λ and Σ are indices on T⊕T ∗, as explained in the appendix. Then, f is the imaginary

part of a pure spinor Φ if and only if q(f) < 0 everywhere (the quotient is understood

pointwise). If this condition is satisfied, the pure spinor Φ is determined explicitly, as

e∆bC̄Φ14
− = i f∞ −

JΛΣ√
−q/12

ΓΛΣf∞ . (2.34)

This is precisely the same pure spinor ¡Φ14
− = η1

+η
4 †
− that appeared on the right hand side

of (2.27). We should note that Hitchin’s theorem describes a pointwise obstruction to

solving the attractor equation.9

The function q described above is related to the Bekenstein-Hawking entropy of the

black hole. This entropy is given by the area of the horizon in four dimensions, which

depends on U(r), and can be determined in terms of f via (2.22). Plugging (2.34) into (2.22)

gives an expression for the entropy in terms of the pure spinor Φ14
− evaluated at the attractor

fixed point: it is essentially the square of the central charge |Z|2, which is |
∫
σ(f) ∧ Φ14

− |2
times an appropriate normalization factor. In fact, this entropy can be written succinctly

in terms of q(f) as

S ∼
∫
e4B+2φ

√
−q(f) . (2.35)

This relation between the entropy and q(f) has been noted already by [21, 22]. We should

emphasize that this construction gives a nice physical interpretation to Hitchin’s theorem:

one can solve the attractor equation precisely when the corresponding solution has positive

(and real) entropy, i.e. when the black hole has a non-vanishing horizon.

There is one additional subtlety we have not yet discussed. The pure spinor Φ14
− fixed

by the attractor equations is implicitly related to the pure spinors describing the vacuum,

Φ13,24
± , since they are both built out of the same spinors. In particular, equations (2.20)

and (2.21) can be expressed as a rather complicated differential constraint on Φ14
− . We

expect that this constraint can be solved by changing f → f + dc for a suitable choice of

c. This is the approach used in [14], for the case where Φ14 is closed. There, the existence

of a suitable c is reduced to a variational problem for the integral of q(f). This gives a

moduli space of solutions as an open set in the appropriate de Rham cohomology. In our

case, this can be applied directly when Y is a Calabi-Yau. For example, when Y is a torus

case all spinors are covariantly constant and the differential constraints are trivial. More

9However, we should note that the sign of f ∧Φ ∼ Φ̄∧Φ at one point in the internal manifold determines

the sign at every other point, since |η|2 = ceB .
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generally, if Φ14 is not closed, one would need to modify the Hitchin functional. We hope

to be able to describe the general solutions of these constraints in the future.

3. Examples

We will now consider a few particular cases of the general equations constructed above.

In section 3.1 we will describe how these equations reduce to the standard form in the

Calabi-Yau case, before considering the explicit example of T 6 in section 3.2. We should

emphasize that the examples considered in this section are meant to be illustrative of the

techniques involved in solving the equations, but are probably not representative.

3.1 The Calabi-Yau Case

The four dimensional attractor equations in this case are well known; they are reviewed in

appendix C. Here our approach differs from existing ones only in that it is formulated in ten

dimensions, rather than in terms of a low energy N = 2 supergravity in four dimensions.

When the internal manifold Y is Calabi-Yau, it admits only one globally defined spinor

η. The ten-dimensional spinor ansatz is given by (2.18), with η2 = η3 = 0 and η1 = η4 = η.

The pure spinors are related to the holomorphic three form and Kahler form on Y , by

¡Φ14
− = i

8¡Ω and ¡Φ14
+ = ¡eiJ . All other pure spinors vanish.

We will first consider the IIB case. The stabilization equation for the pure spinor at

r = 0, (2.27), becomes

f3 = 2Im
(
C̄Ω
)
, C̄ =

i
∫
f3 ∧ Ω̄∫
Ω ∧ Ω̄

. (3.1)

This is the usual stabilization equation (see, e.g. [34]). In addition, one can verify that

the radial flow in complex structure moduli space is precisely that described by (2.27).

The attractor equations at finite r are typically written in terms of a symplectic periods

(XI , FI) rather than directly in terms of the holomorphic three form Ω. For this reason, we

have included in appendix C a discussion of the finite r attractor equation, formulated as a

differential equation for Ω. It is straightforward to verify that this equation is just (2.27).

The expressions in type IIA are identical, except that the two pure spinors Φ14
− and

Φ14
+ are exchanged. For example, the stabilization equation becomes

f0 + f2 + f4 + f6 = 2Im (C̄eiJ) (3.2)

where the constant is fixed by

C̄ =
i
∫
σ(f) ∧ eiJ∫
σ(eiJ ) ∧ eiJ =

2
∫

(f0 − f2 + f4 − f6) ∧ eiJ∫
J ∧ J ∧ J . (3.3)

3.2 IIB on T 6

Consider type IIB string theory compactified on T 6. For most of this section we will not

consider orientifolds of T 6; they will be discussed briefly at the end of the section. Without

orientifolds or flux, type IIB on T 6 gives an N = 8 supergravity in d = 4. The field content

is a single N = 8 gravity multiplet, which contains 70 real scalar fields and 28 vector fields.

There are 56 objects charged under these gauge fields:
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gauge field electric object magnetic object number

Cµabc D3 D3 20

Cµa D1 D5 12

Bµa F1 NS5 12

gµa KK momentum KK monopole 12

The attractor mechanism for black holes made out of D3 branes on the torus is a

special case of the usual Calabi-Yau attractor equations, and is described nicely in [34].

Using the pure spinor formulation, it is straightforward to write down analogous attractor

equations for black holes made out of D1 and D5 branes as well. This provides a simple

illustration of the power of pure spinor techniques.

First, we must decide the form of the spinor ansatz (2.18). There are many possibilities.

The simplest is to consider the torus as a Calabi-Yau, which means taking η2 = η3 = 0.

We will use this ansatz in what follows, because it is the simplest: in general, η2 and η3

will not be zero, and one will have to solve the extra equations for the resulting pure spinor

Φ23.

We will now describe the pure spinor ¡Φ14
− = η1

+η
4†
− on T 6. If η1 and η4 are equal (as

in the Calabi-Yau case, where there is only one globally defined spinor), the one form and

five form pieces of Φ14
− vanish. This can be seen easily by using a basis where the γm are

antisymmetric. The attractor equations in this case reduce to those described by [34].

In general, however, η4 will not be proportional to η1. The pure spinor η1
+ ⊗ η4†

− will

be of the form [18]

Φ14
− = Ω + eij ∧ v . (3.4)

The first term is due to the component of η4 parallel to η1, and the second term is due to

the component perpendicular to η1. So the attractor equation for a configuration of D1,

D3 and D5 branes on a torus is

f1 + f3 + f5 = 2Im
(
C̄(Ω + eij ∧ v)

)
. (3.5)

As we saw in section 2.4, we can determine whether this equation has a solution by looking

at the charges. However, in order to illustrate the existence of new solutions, we can proceed

in the opposite direction; first we choose a pure spinor, and take f to be its imaginary part.

For example, we may choose the pure spinor to be dz1(dz2dz3 + e(1/2i)(dz2 d̄z2+dz3d̄z3
). This

leads to the charges f1 = dx1, f3 = dx1dx2dx3 − dy1dy2dx3 − dy1dx2dy3 − dx1dy2dy3 +

dx1dx2dy2 + dx1dx3dy3, and f5 = dx1dx2dy2dx3dy3. This choice leads to a square torus

(with all τ = i) and a finite value of the black hole area and entropy.

Finally, we can discuss more complicated cases, where the T 6 is orientifolded. Consider

the orientifold that reverses all the coordinates on T 6, which generates 26 O3 planes. This

projection leaves invariant only the Caµ and Baµ gauge bosons. We must now choose a

spinor ansatz that is compatible with the orientifold action. This constrains η1
+ = iη3

+

and η2
+ = iη4

+, so that Φ23
− = σ(Φ14

− ). This is compatible with the fact that only f1 and

f5 charges are allowed, since the three-form parts of Φ14,23
− vanish. One can easily prove

in this case that no such pure spinors exist. This can be seen by noting that if a pure

spinor starts with a one form v, it will necessarily be of the form veform2 , by a theorem
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in [15]. It can also be proven using the theorem in section 2.4. (Remember that there are

no differential constraints in this case, since the spinors are all covariantly constant.) If

we call f̃5 the vector dual to the form f5 (so that we do not need to use the metric), then

q(f1 + f5) = 6(f1f̃5)2 ≥ 0. This shows that these charges lead to no solution.

The previous discussion assumed that the charge of the orientifold is balanced by

D3 branes. One could ask what would happen if there are H ∧ F3 terms as well – this

is perhaps the simplest example of a flux compactification. In addition to the problem

described above, an additional constraint arises from the Bianchi identities. In particular,

the H flux generates new terms of the form H ∧ f1 and H ∧ ∗f5. Canceling both would

require either taking H = 0 (as we did above) or f1 = f5 = 0.

From the four-dimensional point of view, the vectors coming from the R-R sector alone

are not enough to have a non-singular solution in the orientifold case. One would have to

mix the charges with those coming from the NS-NS sector. It would be interesting to

extend the present work to incorporate these charges.10 Similar considerations apply to

the simple non–Kähler vacua introduced in [7] by acting with T-duality on the torus with

F3 and H. Indeed, we would expect that one could write down simple attractor equations

in these cases, as the N = 2 examples constructed in [7] are dual to N = 2 Calabi-Yau

compactifications [37].

Finally, we should mention that many of the considerations in this subsection apply

easily to K3 × T 2. This is N = 4 rather than N = 8, so the choice of internal spinors is

more limited. In this case we obtain an attractor equation of the form (3.5), where ω and

j are members of the triplet of covariantly constant two-forms on K3.
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A. Gamma matrix conventions

Our conventions for the four and six dimensional gamma matrices are

γ0 = γ∗0 = −γ†0
γi = γ∗i = γ†i
γm = −γ∗m = γ†m

(A.1)

where the four dimensional indices µ = (0, i) are raised and lowered with the flat Lorentzian

metric and the six dimensional indices m are raised and lowered with the flat Euclidean

10For example, we may consider a solution with NS-NS charge H3 ∼ volA ∧ hA + volS ∧ hS . This leads

to stabilization equation 0 = Im (C(ιhΦ+ + h ∧ Φ+)) where h = hA + ihS .
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metric. With these definitions, the chirality matrices are

γ5 = iγ0 . . . γ3 = −γ∗5 = γ†5
γ7 = −iγ4 . . . γ9 = −γ∗7 = γ†7
.

(A.2)

Note that with our conventions γ5 is pure imaginary. The ten dimensional gamma matrices

are

Γµ = γµ ⊗ 1, Γm = γ5 ⊗ γm (A.3)

and the ten dimensional chirality matrices are

Γ5 = γ5 ⊗ 1 Γ7 = 1⊗ γ7 Γ11 = γ5 ⊗ γ7 = Γ†11. (A.4)

B. Pure spinors

The objects Φ and ¡Φ considered in this paper have geometrical significance. The first lives

in the bundle of differential forms, and the second in the space of bispinors. The two are

related by the Clifford map, which sends a form dxm1...mk to γm1...mk . In this paper we

denote the bispinor corresponding to a differential form C by ¡C.

The space of bispinors can be viewed as the representation space for two Clifford(6)

algebras, which act by left and right multiplication. The space of differential forms can be

viewed as the representation space for an algebra generated by wedging with one forms,

dxm∧, and contracting with vectors, ιm ≡ ι∂m . This algebra is call Clifford(6,6). It is

generated by twelve gamma matrices (identified with dxm∧ and ιm) and has an indefinite

metric (given by the pairing between vectors and one–forms). It is sometimes useful to

denote these twelve gamma matrices collectively as ΓΛ.

The action of Clifford(6)×Clifford(6) on the space of bispinors is related to the action

of Clifford(6,6) of differential forms. For an even (odd) differential form C±,

γm ¡C± = ((((
((((

((
[(dxm ∧+gmnιn)C±] , ¡C± γm = ± ((((

((((
((

[(dxm ∧−gmnιn)C±] . (B.1)

The observation that this Clifford product is represented by a combination of wedging and

contracting is an old one, see e.g. [35]. This relation is also apparent in the identities

used to manipulate products of antisymmetrized gamma matrices γm1 ...mk , as in e.g. the

appendix of [36]. Recently, this fact has been used in the context of generalized complex

geometry [9, 16, 18, 17].

A pure spinor Φ is annihilated by a dimension six subspace of Clifford(6,6) – i.e. by six

linear combinations of dxm∧ and ιm. To see why this definition is useful, consider the sum

of the tangent and cotangent bundles T⊕T ∗. In general, the structure group of this bundle

is O(6,6). However, the existence of a pure spinor Φ allows us to restrict this structure

group to the subgroup of O(6, 6) that leaves Φ invariant. This turns out to reduce the

structure group to SU(3,3).

To see how this works, consider the space of annihilators of Φ, which has dimension six.

This space can be viewed as the (1, 0) space of an almost complex structure J on T ⊕ T ∗,
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which restricts the structure group to U(3,3). This J is known as a generalized (almost)

complex structure because it lives on T ⊕T ∗ rather than T . This complex structure can be

computed explicitly – it is the expression given in equation (2.33). To understand the origin

of this formula, remember that an ordinary almost complex structure can be defined from

an ordinary spinor η+ as iJmn = η+γmnη+ = Re (η+)γmnRe (η+). The expression in (2.33)

is the same, but with T ⊕ T ∗ indices. It is now clear why Hitchin’s criterion is necessary:

since J is an almost complex structure, it must obey (with appropriate normalization)

Tr(J 2) = −12.11

We can now ask what happens if the geometry admits a pair of pure spinors Φ±. This

pair allows us to reduce the structure group on T⊕T ∗ to SU(3)×SU(3). For the geometries

described in this paper, these pairs appear as exterior products of ordinary spinors, of the

form Φ13
± = η1

+η
3
±. Of course, not all pairs of pure spinors can be written in this product

form; they must obey a compatibility condition. This compatibility condition implies, for

example, that the intersection of the two spaces of annihilators has dimension 3. A pair of

pure spinors Φ± can be used to define a metric [15]

gmn = Jm+ pJ pn− + Jmp+ J n− p , J±ΛΣ ≡
(σ(Re(Φ±)) ∧ ΓΛΣRe (Φ±))top

vol
. (B.2)

Given this metric, one can use (B.1) to map the annihilators of the Φ± to a subspace of

dimension 3 of the left Clifford(6) action – this subspace is precisely the annihilator of the

left η1
+. Likewise, once can also construct the annihilators of the right η3

±. These spaces of

left and right annihilators define an SU(3)×SU(3) structure on T ⊕ T ∗.
In the main text, the vacua under consideration are characterized by two pairs of pure

spinors, Φ13
± and Φ24

± . Of course, these two pairs are not independent: they must define

the same metric.

We should also mention an important special case, where the two spinors that define

¡Φ± = η+η± are equal. In this case we obtain an SU(3) structure on T . In general, one

can compute the explicit form of ¡Φ± using Fierz identities. For the case at hand, it turns

out that ¡Φ− ≡ i
8¡Ω for a complex three–form Ω, and ¡Φ+ = 1

8e
iJ¢ for a real two–form J .

In this case, the compatibility condition between the pure spinors is that J ∧ Ω = 0 (i.e.

J is a (1, 1) form), and that J 3 = 3
4 iΩΩ̄. Together, J and Ω provide an equivalent way

of characterizing the SU(3) structure of T . They also define a positive signature metric,

gij̄ = iJij̄ .

Finally, we should mention Calabi-Yau case. Here, the spinor is covariantly constant

(Dmη = 0) and the differential forms are closed (dJ = 0 = dΩ). These two conditions are

equivalent.

C. The four dimensional attractor equations

In this appendix we will review the four dimensional attractor equations (see also [10] for

a review), and demonstrate that they are equivalent to the form described in the text.

11For spinors on T we usually do not discuss criteria of this form. This is because in six dimensions all

Clifford(6) spinors are pure.

– 17 –



J
H
E
P
0
9
(
2
0
0
6
)
0
4
8

For a Calabi-Yau compactification of type II supergravity, the low energy theory is

D=4, N = 2 supergravity with some number of vector and hyper multiplets. The low

energy theory includes BPS black hole solutions, whose metric is of the form

ds2 = −e2U(r)dt2 + e−2U(r)(dr2 + r2(dθ2 + cos2 θdφ2) . (C.1)

The metric factor U(r) and the vector multiplet moduli ta(r) are functions of radius. The

BPS equations for this background reduce to a set of linear differential equations for U and

ta,

U̇ =
eU

r2
|Z|, ṫa =

eU

r2|Z|g
ab̄∂b̄|Z|2. (C.2)

Here · denotes d/dr, Z(ta(r)) is the central charge and gab̄ is the metric on vector multiplet

moduli space. For the rest of this appendix, we will describe using geometric language the

attractor equations in type IIB.

For type IIB on a Calabi-Yau the moduli ta describe deformations of the complex

structure, which is related to the holomorphic three form Ω. The charge of the black hole

is parameterized by an element F of H3. The metric is Kähler,

gab̄ = Kab̄, e−K = i
〈
Ω, Ω̄

〉
(C.3)

and the central charge is

Z = eK/2〈Ω, F 〉 . (C.4)

The subscripts a,b̄ denotes derivatives, and we have defined 〈α, β〉 =
∫
Y α ∧ β. Since we

are considering only the four dimensional effective theory, we may regard a three form on

Y not as a full differential three form but rather as (the harmonic representative of) an

element of H3. So 〈 , 〉 may be thought of as the symplectic inner product on a finite

dimensional vector space.

Now, since Ω and Ω̄ are basis elements of H3,0 and H0,3, it is useful to define projection

operators

P 3,0α =

〈
α, Ω̄

〉
〈
Ω, Ω̄

〉Ω, P 0,3α =
〈Ω, α〉〈
Ω, Ω̄

〉 Ω̄. (C.5)

We will denote projection operators onto the transverse space by P 3,0
⊥ = 1 − P 3,0 and

P 0,3
⊥ = 1−P 0,3. The derivatives Ωa and Ω̄ā are in H3,0⊕H2,1 and H0,3⊕H1,2, respectively,

so we can define projection operators onto H2,1 and H1,2 by

P 2,1α = −gab̄
〈
α, P 0,3

⊥ Ω̄b̄

〉

〈
Ω, Ω̄

〉 P 3,0
⊥ Ωa, P 1,2α = −gab̄

〈
P 3,0
⊥ Ωa, α

〉

〈
Ω, Ω̄

〉 P 0,3
⊥ Ω̄b̄. (C.6)

It is straightforward to verify that all of these projection operators obey P 2 = P , commute

with one another, and are adjoints with respect to the symplectic inner product:

〈
α, P 0,3β

〉
=
〈
P 3,0α, β

〉
,
〈
α, P 1,2β

〉
=
〈
P 2,1α, β

〉
. (C.7)
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To show this, it is useful to use the explicit form of the metric

gab̄ = −

〈
P 3,0
⊥ Ωa, Ω̄b̄

〉

〈
Ω, Ω̄

〉 = −

〈
Ωa, P

0,3
⊥ Ω̄b̄

〉

〈
Ω, Ω̄

〉 . (C.8)

Moreover, the operators described above form a complete basis of H 3, so

P 3,0 + P 2,1 + P 1,2 + P 0,3 = 1. (C.9)

It is straightforward to show that

∂a|Z|2 = i

〈
F, Ω̄

〉
〈
Ω, Ω̄

〉
〈
P 3,0
⊥ Ωa, F

〉
, ∂ā|Z|2 = i

〈Ω, F 〉〈
Ω, Ω̄

〉
〈
F, P 0,3

⊥ Ω̄ā

〉
. (C.10)

Using the fact that Ω̇ = ṫaΩa, we can multiply both sides of the second attractor equation

by gab̄ to get

〈
Ω̇ + i

eU

r2

〈Ω, F 〉
|Z| F, P 0,3

⊥ Ω̄ā

〉
= 0,

〈
P 3,0
⊥ Ωa,

˙̄Ω + i
eU

r2

〈
F, Ω̄

〉

|Z| F

〉
= 0. (C.11)

These equations fix the components of Ω̇ and ˙̄Ω in H2,1 and H1,2, respectively, so that

P 2,1Ω̇ = −ie
U

r2

〈Ω, F 〉
|Z| P 2,1F, P 1,2 ˙̄Ω = −ie

U

r2

〈
F, Ω̄

〉

|Z| P 1,2F. (C.12)

The H3,0 and H0,3 components are left unfixed, so we can write

Ω̇ = −ie
U

r2

〈Ω, F 〉
|Z| P 2,1F + χΩ, ˙̄Ω = −ie

U

r2

〈
F, Ω̄

〉

|Z| P 1,2F + χ̄Ω̄ (C.13)

for an arbitrary function χ(r). These are unphysical components of Ω̇ which can be ab-

sorbed into Kähler transformations on moduli space. Recall that the moduli space metric,

and indeed the entire low energy action, are invariant under the Kähler transformation

Ω→ ef(ta)Ω, Ω̄→ ef̄(t̄ā)Ω̄ (C.14)

for an arbitrary holomorphic function f(ta) on moduli space. This transformation takes

K → K − (f(ta) + f̄(t̄ā)) and

χ→ χ+ ḟ = χ+ faṫ
a. (C.15)

So, by judicious choice of f(ta), we may set χ(r) to be whatever we like.

One natural choice is χ = 0. In this case
〈

Ω̇, Ω̄
〉

=
〈

Ω, ˙̄Ω
〉

= 0, and the Kähler

potential is independent of radius. Another simple choice is to take

Ω̇ = −ie
U

r2

〈Ω, F 〉
|Z| (P 3,0 + P 2,1)F, ˙̄Ω = −ie

U

r2

〈
F, Ω̄

〉

|Z| (P 0,3 + P 1,2)F. (C.16)
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In this case 〈
Ω̇, Ω̄

〉
=
〈

Ω, ˙̄Ω
〉

= i
eU

r2
|Z|e−K (C.17)

is pure imaginary, so

K̇ = 2
eU |Z|
r2

= 2U̇ . (C.18)

This equation can be integrated to give the relation of [1] between the spacetime and moduli

space metrics: 2U(r) = K(r)−K(∞).

However, it is useful to have a more explicit form for the attractor equations that does

not require fixing Kähler gauge invariance. First, note that

K̇ = −(χ+ χ̄), ∂r

(
ln
Z

Z̄

)
= χ− χ̄. (C.19)

So χ = −Θ̇/Θ, where

Θ =

√
Z̄

Z
eK/2. (C.20)

With a little algebra, the attractor equations become

∂r(ΘΩ) = −ie
U

r2
P 2,1F, ∂r(Θ̄Ω̄) = i

eU

r2
P 1,2F. (C.21)

Using the completeness relation for projection operators, these are equivalent to the single

equation

Im {∂r (ΘΩ)} = − e
U

2r2

(
F − Im 2eK/2Z̄Ω

)
(C.22)

where Θ is defined above. Note that under Kähler transformations Θ → e−fΘ, so both

sides of this equation are invariant. It is straightforward to show that the equations in this

form are equivalent to the pure spinor equation (2.27) described in the text.
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